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Metabolites are the intermediate and end prod-
ucts of all metabolic processes; a change in 
metabolic profiles is therefore an integrated 

read-out of cellular processes in health and disease.1 
Complementary to other “omic” technologies, metab-
olomics, including the subbranch of lipidomics, aims 
to capture the vast range of small molecules involved 
in metabolomic networks. Technological advances in 
high-resolution mass spectrometry (MS) and nuclear 
magnetic resonance spectroscopy (NMR) have been 
at the forefront of metabolic research. NMR is widely 
used, especially for metabolic profiling of large clinical 
cohorts,2 owing to high throughput and relatively low 
costs, but MS has become the analytical platform of 

choice for metabolite profiling. MS can be performed 
in a targeted and untargeted manner. Untargeted 
analysis of metabolites has the potential to reveal pre-
viously unknown pathophysiological mechanisms by 
the simultaneous assessment of multiple metabolic 
pathways. Targeted analysis, on the other hand, can 
be used to quantify specific metabolites with greater 
specificity and sensitivity, with the possibility of 
determining absolute concentrations using authentic 
standards. 
	 Cardiovascular diseases (CVDs) are intrinsically 
linked with metabolic disorders, namely obesity, dyslip-
idemia, insulin resistance, and type 2 diabetes mellitus 
(T2DM).3,4 Thus, the technical advances for metabolic 
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profiling will be particularly useful for studying cardio-
metabolic disorders. Insulin resistance, for example, 
can exist for years without manifestation of clinical 
symptoms of T2DM4 and early detection of insulin re-
sistance may allow effective interventions in order to 
delay onset and prevent complications like CVD. Here 
we review key findings of metabolomics studies look-
ing at cardiometabolic diseases (Figure 1). 

Branched-chain amino acids and type 2 diabetes 
mellitus 

Increased levels of branched-chain amino acids 
(BCAAs) contribute to insulin resistance3 and predict 
T2DM.4 In a cross-sectional study, Newgard et al 
documented differences in blood metabolite profiles 

of 74 obese and 67 lean individuals, with significant 
differences found in the abundance of BCAAs (va-
line, leucine, and isoleucine) as well as acylcarnitines 
(C3 and C5) and other amino acids.3 Obese subjects 
displayed a BCAA “signature” by which dysregulated 
BCAA metabolism (due to overload) contributes to 
the development of insulin resistance and glucose in-
tolerance, leading to T2DM.3 In rats, dietary BCAAs 
seemed to induce mammalian target of rapamycin 
(mTOR)–insulin receptor substrate-1 phosphorylation 
and treatment with rapamycin, an mTOR inhibitor, al-
leviated insulin resistance only in rats fed a BCAA/
high-fat diet compared with rats fed a high-fat diet 
only.3 Expanding on these findings by the Newgard 
group, Wang et al confirmed BCAAs as potential bio-
markers for incident T2DM in two large, longitudinal 
studies.4 The results showed baseline levels of five 
branched-chain and aromatic amino acids (isoleu-
cine, leucine, valine, tyrosine, and phenylalanine) to 
be significantly associated with future T2DM, high-
lighting the potential of monitoring amino acid metab-
olism in addition to established markers of glucose 
metabolism to detect early manifestations of T2DM.4

Acylcarnitines and coronary artery disease

Shah et al used targeted liquid chromatography–MS/
MS and isotopically labeled standards for absolute 
quantitation of 69 metabolites in coronary artery dis-
ease (CAD) patients (who underwent cardiac cathe-
terization) and controls from the CATHeterization GE-
Netics (CATHGEN) biorepository.5 As well as changes 
in glutamate/glutamine, proline, methionine, and urea 
cycle metabolites, the BCAAs leucine, isoleucine, and 
valine were also associated with CAD. As expected, 
T2DM was more prevalent among cases than con-
trols. After statistical adjustment for T2DM, however, a 
significant association of circulating BCAAs with CAD 
remained, indicating that changes in BCAAs may 
either identify patients with insulin resistance before 
manifestation of T2DM3 or that in addition, the BCAA 
pathway is also associated with CAD. A further sig-
nature composed of short-chain dicarboxylacylcarni-
tines was not only associated with the prevalence of 
CAD, but also with occurrence of death or myocardial 
infarction (MI) during a median of almost 3 years of 
follow-up in patients with existing CAD.5 Carnitine, 
with its predominant source in red meat, is required 
for the import of long-chain fatty acids into mitochon-
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Fig. 1 Metabolomics and cardiovascular disease (CVD). Overview 
of metabolites with reported associations to CVD.
Abbreviations: BB, butyrobetaine; TMA, trimethylamine; TMAO, trimethyl-
amine N-oxide.
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dria. The transfer of an acyl group on coenzyme A 
results in the formation of acylcarnitines, which can 
then be shuttled across the mitochondrial membrane. 
Shah and colleagues have since reported similar find-
ings in a much larger cohort of more than 2000 pa-
tients, in which short-chain dicarboxylacylcarnitines 
as well as medium-chain acylcarnitines and fatty acid 
levels in plasma were shown to independently predict 
cardiovascular events after adjustment for standard 
risk predictors.6 

Choline/trimethylamine N-oxide and cardiovascular 
risk 

Another known diet-related metabolite is choline. In a 
study by Wang et al, metabolism of dietary phospha-
tidylcholine by the gut flora was shown to increase 
risk of atherosclerosis and CVD by generating the ca-
tabolites choline, trimethylamine N-oxide (TMAO), and 
betaine in both humans and mice.7 Dietary choline 
promoted the formation of atherosclerotic plaques in 
mice, and this could be prevented by antibiotic treat-
ment.7 A distinct second pathway for TMAO forma-
tion was highlighted by Koeth et al: supplementation 
of g-butyrobetaine, a gut microbial intermediate in 
the metabolism of L-carnitine to trimethylamine and 
TMAO, also increases atherosclerotic plaque area 
significantly (50%) in mice.8 Again, no increase was 
observed in g-butyrobetaine–fed mice when given 
an antibiotic cocktail to suppress gut microbes.8 
More recent findings, however, would suggest that 
the association between TMAO and CVD could, at 
least partially, be explained by impaired kidney dys-
function. TMAO levels are greatly influenced by the 
glomerular filtration rate and are elevated in chronic 
kidney diseases.9 Renal impairment is a well-estab-
lished cardiovascular risk factor, putting into question 
the causal relationship of dietary choline and CVD.9 
Similarly, impaired renal clearance could contribute 
to increased systemic TMAO levels in patients with 
stable heart failure; elevated TMAO was associated 
with more than a 3-fold increase in mortality.10 

Metabolomics in myocardial ischemia and infarction

Ischemia leads to impaired adenosine triphosphate 
(ATP) metabolism and causes an accumulation of 
sequential purine degradation products (adenos-
ine diphosphate [ADP], adenosine monophosphate 

[AMP], inosine, hypoxanthine, and xanthine). Using 
targeted MS metabolomics and plasma samples 
from 36 patients before and after exercise testing, 
Sabatine et al reported elevated lactic acid and me-
tabolites involved in skeletal muscle AMP catabolism 
as well as significant changes in six members of the 
citric acid pathway in response to myocardial isch-
emia after exercise.11 Lactate and glucose have also 
been found to predict exercise-induced ischemia 
in patients with suspected CAD in blood samples 
obtained before exercise.12 In patients undergoing 
alcohol septal ablation for the treatment of hyper-
trophic obstructive cardiomyopathy, Lewis et al ana-
lyzed serial blood samples from the coronary sinus 
and periphery.13 Metabolite profiles by targeted MS 
were compared to identify markers associated with 
induced MI. Changes in metabolites were detected 
as early as 10 minutes after planned MI producing 
a metabolic signature consisting of aconitic acid, 
TMAO, threonine, and hypoxanthine, all of which dif-
ferentiated patients with spontaneous MI from those 
undergoing diagnostic coronary angiography. Purine 
degradation products, namely hypoxanthine and 
xanthine, have been proposed to be potentially use-
ful markers of ischemia. They not only increase in the 
circulation after induced MI,13 but the urinary excre-
tion of hypoxanthine and xanthine is also elevated in 
acute coronary syndrome (ACS) patients.14 A point 
to note is that alterations in these metabolites were 
seen when no significant rises in the clinically avail-
able biomarkers, myocardial creatine kinase (CK-
MB) and troponin T, were detectable in the plasma,13 
illustrating the potential of metabolites to detect the 
presence of very early myocardial injury; no currently 
used biomarkers are elevated within a time frame of 
10 minutes. A caveat of using metabolites as bio-
markers for cardiac ischemia is the lack of tissue 
specificity. Unlike cardiac troponins, these metabo-
lites are ubiquitously present.
	 Another study by Vallejo et al used a gas chro-
matography–MS platform to compare the “metabo-
lomic fingerprint” of plasma samples from patients 
with non–ST-segment elevation ACS, stable athero-
sclerosis, and healthy patients (n=9-10 per group).15 
Among other changes, 4-hydroxyproline was found 
to decrease in ACS patients compared with con-
trols. Change in 4-hydroxyproline is of interest as it 
is a component of collagens. The vascular extracel-
lular matrix stabilizes atherosclerotic plaques to help 
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prevent rupture. Circulating levels of 4-hydroxyproline 
are also thought to prevent the binding of low-density 
lipoprotein (LDL) to lipoproteins previously deposited 
in the vascular wall and to release already deposited 
LDL from atherosclerotic lesions.15 

Lipidomics and cardiovascular risk

Traditionally, cardiovascular research focused mainly 
on the role of lipid classes rather than individual mo-
lecular species. Recent studies, however, highlight 
the importance of recognizing subtypes of lipids. De-
tailed knowledge of how individual lipid species con-
tribute to pathophysiology of CVD may provide better 
biomarkers and novel therapeutic targets.16 We have 
performed MS-based lipidomics in the prospective, 
population-based Bruneck study to identify molecular 
lipid signatures for cardiovascular risk; triacylglycerols 
and cholesterol esters with low carbon number and 
double-bond content were associated with predicting 
CVD events over a 10-year period,17 including triacylg-
lycerol 54:2 and cholesterol ester 16:1. The observed 
shift in fatty acid composition in complex lipids would 
be consistent with fatty acids derived from hepatic de 
novo lipogenesis (14:0 [myristic acid], 16:0 [palmitic 
acid], 18:0 [stearic acid], 16:1 [palmitoleic acid], and 
18:1 [oleic acid]) being associated with a higher CVD 
risk than essential fatty acids. Subsets of triacylglyc-
erols with the same nonessential fatty acids were also 
associated with increased risk of T2DM.18 In the EPIC 
(European Prospective Investigation into Cancer and 
nutrition)-InterAct case-cohort study, the even-chain 
saturated fatty acids (14:0, 16:0, and 18:0) were 
positively associated with incident T2DM.19 The ra-
tio of 16:1 (n-7) to 16:0 was significantly positively 
associated with T2DM, but the ratio of 18:1 (n-9) to 
18:0 was not. Unlike even-chain saturated fatty acids, 
odd-chain saturated fatty acids displayed an inverse 
relationship with the risk of T2DM, showing that not 
all saturated fatty acids have an adverse effect as 
conventionally classified.19 
	 As expected, elevated levels of most lipid classes 
are associated with increased cardiovascular risk.17 
Lysophosphatidylcholines (LPCs), however, showed 
an inverse relationship with incident CVD in the Bru-
neck study.17 A similar inverse association between 
LPCs and CVD were demonstrated by Ganna and 
colleagues investigating metabolic profiles of more 
than 3600 individuals from three population-based 

studies.20 Using both an untargeted and targeted MS 
approach, the authors identified four metabolites to 
be associated with incident coronary heart disease, 
independently of main cardiovascular risk factors; 
LPCs 18:1 and 18:2, monoglyceride 18:2, and sphin-
gomyelin 28:1. LPCs were negatively associated with 
body mass index, markers of inflammation, and sub-
clinical CVD, whereas the opposite was the case for 
monoglyceride 18:2. When added to a model for risk 
prediction, monoglyceride 18:2 was a better predic-
tor of coronary heart disease compared with triacyl-
glycerol levels. It was associated with higher levels of 
cardiovascular risk factors and markers of subclinical 
CVD and oxidative stress.20 Notably, LPC 18:2 has 
also been found to be inversely associated with inci-
dent T2DM and impaired glucose tolerance.21 

Conclusions and future outlook

Both untargeted and targeted metabolomics will im-
prove the identification of pathophysiological distur-
bances in metabolic networks. Enzymatic activities 
are the determinants of metabolite levels, thus to 
understand biological systems, small molecule me-
tabolite data should be integrated with other “omics” 
analysis.1 Although targeted methods can provide 
absolute measurements with the use of labeled 
standards, this inevitably means that one is limited 
to changes in metabolites whose retention times 
and MS parameters have been incorporated into the 
MS method. Knowledge of the human metabolome 
is anticipated to grow, hence untargeted methods 
are useful for hypothesis-free discovery analysis. As 
the use of single metabolites may lack sensitivity or 
specificity for risk stratification,22 risk assessment can 
be improved by using multiple biomarkers to create 
a systems-level integration of “metabolomics” data.23 
To aid in this complex analysis, the use of compu-
tational algorithms is a requirement. Further under-
standing of metabolic networks may advance our un-
derstanding of the underlying mechanisms of CVD, 
as well as improve risk prediction and aid the devel-
opment of novel therapeutic interventions. L
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