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Interactions in Atrial Fibrillation*

Javier Barallobre-Barreiro, PuD, Manuel Mayr, MD, PuD

trial fibrillation (AF) is the most common
arrhythmia encountered in clinical practice,

with an estimated 30 million individuals af-

fected worldwide (1). AF constitutes a major risk factor
for stroke and heart failure, resulting in significant
morbidity and mortality. Remodeling of the atria is a
consequence as well as a substrate for perpetuation of
AF. The remodeling process occurs at various levels,
including atrial fibrosis, cardiomyocyte contractibility,
and electrical coupling. During electrical remodeling, an
unbalanced calcium (Ca®") transport exposes cardiomyo-
cytes locally to increased Ca®" levels. Ca®* overload is
thought to trigger the activation of Ca>"-dependent calci-
neurin and Ca®*/calmodulin-dependent protein kinase II
(CaMKII), which is involved in electrical remodeling and
the initiation of cell death pathways (2). Initially, Ca*"-
dependent activation leads to autophosphorylation of
CaMKII, which in turn induces sustained Ca>*-indepen-
dent activation of this kinase. Later, reactive oxygen spe-
cies contribute to Ca®"-independent CaMKII activation
via oxidation of methionines (3). Inhibition of CaMKII
showed benefits in animal models of AF (4,5), but most
ion channels and enzymes involved in Ca*" handling
are ubiquitously expressed (6), and no antiarrhythmic
drug currently targets atria in a cell-type-specific manner.
Regulatory subunits of phosphatases may repre-
sent an alternative target. Interestingly, protein
phosphatase 1 (PP1) and 2 (PP2A), together with
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calcineurin, constitute almost 90% of the total protein
phosphatase activity in the heart (7). Protein phos-
phatase holoenzymes comprise multimeric enzymes
with their regulatory (R) rather than catalytic (PPic)
subunits being responsible for subcellular localiza-
tion, substrate specificity, and activity. PPic forms
complexes with more than 50 regulatory subunits.
More than one-half of the human proteins undergo
reversible phosphorylation (8). Thus, a comprehen-
sive characterization of phosphatase-holoenzyme
complexes in human cardiac tissue is required.

SEE PAGE 163

In this issue of the Journal, using affinity prote-
omics (Figure 1), Chiang et al. (9) investigated inter-
action partners of PPic in AF. Coimmunoprecipitation
experiments were performed in right atrial specimens
from patients as well as in cardiac tissue from mice.
PPic interaction partners were identified in human
and mouse cardiac tissue. In human, only 9 interac-
tion partners had previously been designated as pu-
tative R-subunits (PP1-interacting holoenzymes) in
atrial tissue. The authors acknowledged that abun-
dant proteins can be contaminants and identified
regardless of their interaction specificity in coimmu-
noprecipitation experiments (10). They substantiated
the specificity of the binding partners by using a
bioinformatic screen: 60 of the 78 proteins immuno-
precipitated from human atria contained at least 1
of 3 known PPic-docking motifs (namely, RVXF,
MyPhoNE, and SILK). Similar results were obtained in
mice. Next, the authors (9) quantified the relative
binding of the known R-subunits to PPic. Label-free
quantification by mass spectrometry offers an esti-
mate of protein abundance because the number of
analyzable peptides is proportional to the sequence
length of the respective protein. Nonetheless, the
estimate varies depending on the amino acid
sequence and the ionization efficiency of the digested
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peptides. Low-abundance proteins are usually less
reliably quantified by proteomics. Known R-subunits
showed the highest relative binding to PPic: PPP1R7
and PPP1R2 were among the top interactors in mice
and human, whereas PPP1R8 and PPP1R18 showed
more binding in human and PPP1R11 was only found
in mice.

For 3 putative candidates, their interaction with
PPic was further validated: protein transport Sec31A
(SEC31A), valosin-containing protein (VCP), and
cold-shock domain protein A (CSDA) were coimmu-
noprecititated with PPic in HEK293 cells. Then, the
authors (9) explored differences in the PPic inter-
actome between patients with sinus rhythm and
those with paroxysmal AF. PPP1R7, CSDA, and PDE5A
had increased binding to PPic in patients with
paroxysmal AF. Stronger binding, at least for 2 of the
candidate targets, was observed in the absence of
increased expression of the R-subunits or PPic, sug-
gesting that conformational changes in the PPic
complex might contribute to the alterations in phos-
phorylation levels in AF. CSDA is a transcriptional
factor and represses the activity of hypoxia inducible
factor-1a and nuclear factor kB in the nucleus of HeLa
cells (11). CSDA localizes to the sarcolemma of iso-
lated cardiomyocytes. The authors (9) suggest po-
tential roles for CSDA in AF. PDE5A is a cyclic
guanosine 3',5-monophosphate-dependent-specific
phosphodiesterase. Inhibition of PDE5A prevents
cardiac hypertrophy and left ventricular dysfunction
associated with oxidative stress and extracellular
matrix production in mice (12). Cardiac fibroblast
proliferation and extracellular matrix secretion
contribute to Ca>*' re-entry pathways in AF (13).

Proteomics has been used for interrogating cardiac
metabolism (14), characterizing cardiac fibrosis (15),
or exploring changes in myofilament composition
(16,17). Affinity proteomics opens new avenues for
studying molecular interactions. Coimmunoprecipi-
tation, however, can be notoriously prone to unspe-
cific binding (10). Moreover, experiments in tissue
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FIGURE 1 Affinity Proteomics Workflow
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Known and putative regulatory subunits were identified based on their interaction with the
catalytic subunit of protein phosphatase 1 (PP1c). CSDA = cold-shock domain protein A;
PDE5A = phosphodiesterase type-5A; PPP1R = PP1 regulatory subunit.

lysates may not accurately reflect the in vivo in-
teractions. PPic is expressed in many cell types,
including cardiomyocytes and cardiac fibroblasts.
Tissue lysates will contain R-subunits of different cell
types, which would be spatially separated in intact
tissue. Also, age and sex could be possible con-
founders in this analysis: patients with paroxysmal
AF were on average 10 years older and predominantly
female, whereas patients in sinus rhythm were almost
entirely male. Finally, the study was performed in
right atrial tissue. In the context of AF, it would be
interesting to validate these findings in left atria.
Thus, further studies are required to understand
how the putative R-subunits alter PPic activity and
whether they could pave the way for novel in-
terventions to control phosphorylation levels in AF.
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